Extensions 1→N→G→Q→1 with N=C92 and Q=C22

Direct product G=N×Q with N=C92 and Q=C22
dρLabelID
C22×C92368C2^2xC92368,37

Semidirect products G=N:Q with N=C92 and Q=C22
extensionφ:Q→Aut NdρLabelID
C92⋊C22 = D4×D23φ: C22/C1C22 ⊆ Aut C92924+C92:C2^2368,31
C922C22 = C2×D92φ: C22/C2C2 ⊆ Aut C92184C92:2C2^2368,29
C923C22 = C2×C4×D23φ: C22/C2C2 ⊆ Aut C92184C92:3C2^2368,28
C924C22 = D4×C46φ: C22/C2C2 ⊆ Aut C92184C92:4C2^2368,38

Non-split extensions G=N.Q with N=C92 and Q=C22
extensionφ:Q→Aut NdρLabelID
C92.1C22 = D4⋊D23φ: C22/C1C22 ⊆ Aut C921844+C92.1C2^2368,14
C92.2C22 = D4.D23φ: C22/C1C22 ⊆ Aut C921844-C92.2C2^2368,15
C92.3C22 = Q8⋊D23φ: C22/C1C22 ⊆ Aut C921844+C92.3C2^2368,16
C92.4C22 = C23⋊Q16φ: C22/C1C22 ⊆ Aut C923684-C92.4C2^2368,17
C92.5C22 = D42D23φ: C22/C1C22 ⊆ Aut C921844-C92.5C2^2368,32
C92.6C22 = Q8×D23φ: C22/C1C22 ⊆ Aut C921844-C92.6C2^2368,33
C92.7C22 = D92⋊C2φ: C22/C1C22 ⊆ Aut C921844+C92.7C2^2368,34
C92.8C22 = C184⋊C2φ: C22/C2C2 ⊆ Aut C921842C92.8C2^2368,5
C92.9C22 = D184φ: C22/C2C2 ⊆ Aut C921842+C92.9C2^2368,6
C92.10C22 = Dic92φ: C22/C2C2 ⊆ Aut C923682-C92.10C2^2368,7
C92.11C22 = C2×Dic46φ: C22/C2C2 ⊆ Aut C92368C92.11C2^2368,27
C92.12C22 = C8×D23φ: C22/C2C2 ⊆ Aut C921842C92.12C2^2368,3
C92.13C22 = C8⋊D23φ: C22/C2C2 ⊆ Aut C921842C92.13C2^2368,4
C92.14C22 = C2×C23⋊C8φ: C22/C2C2 ⊆ Aut C92368C92.14C2^2368,8
C92.15C22 = C92.C4φ: C22/C2C2 ⊆ Aut C921842C92.15C2^2368,9
C92.16C22 = D925C2φ: C22/C2C2 ⊆ Aut C921842C92.16C2^2368,30
C92.17C22 = D8×C23φ: C22/C2C2 ⊆ Aut C921842C92.17C2^2368,24
C92.18C22 = SD16×C23φ: C22/C2C2 ⊆ Aut C921842C92.18C2^2368,25
C92.19C22 = Q16×C23φ: C22/C2C2 ⊆ Aut C923682C92.19C2^2368,26
C92.20C22 = Q8×C46φ: C22/C2C2 ⊆ Aut C92368C92.20C2^2368,39
C92.21C22 = C4○D4×C23φ: C22/C2C2 ⊆ Aut C921842C92.21C2^2368,40
C92.22C22 = M4(2)×C23central extension (φ=1)1842C92.22C2^2368,23

׿
×
𝔽